

DUTCH PILOT PROJECTS

PARTNERS

scandibyg

LOCATION

SCHAGEN - MUGGENBURG ZUID

AMSTERDAM - MOLENWIJK

SUBURBAN SITE

Coordinates : 52°47′N 4°48′E

EXISTING BUILDING EXTENSION

PERI-URBAN SITE

Coordinates: 52°25′N 4°53′E

SCHAGEN MUGGENBURG ZUID

4no.

Residential

60 to 100 (depending on mix)

7000

5 to 7 storey (3250 mm floor to floor)

2.5+Self-weight

2

6 floors/8 beams

55

60

o.2 min.

PARAMETERS

Number of blocks

Building Use

Number of houses

GIA (m2)

Building Height (m)

Assumed Dead Load (kN/m2)

Assumend Live Load (kN/m2)

Floor Vibration

Acoustic Performance (L'nTw, dB)

Fire Performance (mins.)

U-Value (W/m2K)

AMSTERDAM MOLENWIJK

1 no. (exixtib build. extension)

Residential

40

6720 (resi. extension)

4 exist.+ 3 extension (3000 mm floor to floor)

2.5+Self-weight

2

6 floors/8 beams

55

60

o.2 min.

1.SCHAGEN - MUGGENBURG ZUID

SITE - MASTERPLAN

FOUR RESIDENTIAL BLOCKS

OUTLINE TARGET: 20 TO 40 HOUSES x BLOCK (final number depending on mix. and build. height)

BUILDING FOOTPRINTS SLIGHTLY DIFFERENTLY SIZED

Pilot projects / Blocks (5 to 7 storey)

Buildings (2 to 3 storey)

Primary / Secondary roads

Parking spaces

Canals

KEY HOUSE TYPES

TYPICAL FLOORPLAN (6 HOUSES X FLOOR CONFIGURATION)

48 HOUSES - TYPICAL 8 STOREY

STUDIO Single aspect unit (never facing North) 33 sqm

FIVE KEY HOUSE TYPES

MIX OF UNITS - ADAPTABILITY POTENTIAL

MIX OF UNITS - ADAPTABILITY POTENTIAL (MAX. CAPACITY)

NOTE :

This additional plan configuration - that includes double escape stairs - maximises the number of units that are accessed per core (8 no.); we could design eight even smaller units and reduce the floorplan, but we do not recommend creating floor plans with more units.

"Development proposals should ensure that the number of dwellings accessed from a single core does exceed eight per floor. Deviation (by exception) from this requirement will need to be justified and mitigated by maximising corridor widths (beyond 1500mm) and introducing natural ventilation/daylight to corridors. (Excerpt from the London Housing Design Guide)

TYPICAL PLAN

BUILDING 1 _ 4 no. UNITS x FLOOR

Note: see page 32 for layout with two escape stairs/routes; alternatively core could include "wokkel staricase" creating two escape routes

BUILDING 2 _ 4 no. UNITS x FLOOR

Note: see page 32 for layout with two escape stairs/routes

MASSING AND GRIDS

MASSING

The Build-in-Wood structural system has been designed for buildings between 5 and 10 stories in height.

If built with the system, projects of less than 5 stories could be over engineered, containing redundant material. However, an unique approach to using engineered timber can facilitate specific design aspirations in low rise schemes and so should be considered on a case by case basis. For buildings over 10 stories, consideration of a hybrid approach, using engineered timber alongside other materials such as concrete and steel, could be required in order to keep member sizes practical and to use each material to its advantage. From this point of view the Shagen residentail blocks falls within the "sweet spot" for maximum use of engineered timber.

GRIDS

We must design a timber building as a timber building from the outset; in order to choose the most efficient span dimensions and structural solutions: trying to force it into structural grids conceived for traditional building materials such as concrete or steel will result in material and component size inefficiencies. Grids need to be defined trying foresee the best possible use of space and also to optimise the relative sizes of all structural components: efficiency is a multifaceted concept (belonging to the categories of material, cost, space) that does only depend on column spacing and area efficiencies. Two main grid types are commonly used for post&beam structures: the square and the rectangular one.

The choice between the two is influenced by the following considerations:

- span/dimensional ranges for floor panels
- max. allowable building height, floor to floor and internal/room heights
- material efficiency
- cost: e.g. thinner floor panels lower the overall material costs but this saving is often offset by a larger beam/columns number.

 Square grids are moderately material efficient as this configuration makes the slabs work as hard as the beams.

STRUCTURAL SYSTEM

STRUCTURAL DESIGN CONCEPT - AXONOMETRIC VIEW

STRUCTURAL DESIGN CONCEPT - TYPICAL PLAN

TYPICAL STRUCTURAL BAY

CLT cores (stability structure)

CLT shear walls (stability structure_ see plans) (*)

Glulam beams

Glulam Columns

CLT slabs spanning direction

Ground floor slab (see axonometry)

Note: (*) Shear-walls needed where indicated. Openings, if needed, to be vertically aligned.

BUILD-IN-WOOD 25

SYSTEM - CARPARK INTEGRATION

SITE OVERVIEW

OTHER CARPARK INTEGRATION OPTIONS

SITE A_ ABOVE GROUND - ONE STOREY CARPARK INTEGRATED WITH HOUSING BLOCK STRUCTURE

SITE A_ UNDERGROUND CARPARK INTEGRATED WITH HOUSING BLOCK STRUCTURE

STRUCTURE - UNDERGROUND/INTEGRATED CARPARK COORDINATION

The Build-in-Wood system can be adapted to coordinate with car park structures placed either under or over-ground.

Two options have been explored (both compliant with Dutch NEN 2443 regulation) for the Muggengurg buildings: a one drive aisle and a two drive aisle, which depends on the amount of the required car park spaces. Both options are based on the idea that continuity between timber and concrete structures allow for max. materila and cost efficiency.

Key considerations:

- A standard car park space is 2.500m x 5.130m
- The drive aisle for perpendicular parking must be> 5.660 m*
- The columns in line with the car park spaces must be recessed between 0.500m and 1.500m
- 5.700m span to allow for two cars, 8.100m span for 3 cars
- 4.800m span for the one drive aisle option, 9.000m span for the two drive aisles option
- 7.500m span for both options
- Shorter span shallower beams at the service area
- Wet areas ring around the core

Alternatively we could design a transfer structure - e.g. concrete down-stand beams - at the interface between concrete and timber structure. This approach would allow for each structure (timber/concrete) to be independent: a flexibility that has important cost implications but might also be advantageous, especially when dealing with existing structures that are outdated in terms of min. parking spaces dimensions.

Note:

(*) in non-public car parks whilst in public carpark it need to be >6.00m

ONE DRIVE ISLE TWO DRIVE ISLE

STRUCTURE ADJUSTMENTS TO INTEGRATE ONE STOREY ABOVE-GROUND CARPARK

STRUCTURAL DESIGN CONCEPT - AXONOMETRIC VIEW

Note ground floor RC concrete podium to interface with car park

and protect/elevate timber structure

STRUCTURAL DESIGN CONCEPT - TYPICAL PLAN

STRUCTURAL OF BIW "INITIIAL" AND
"ADJUSTED" STRUCTURES

TYPICAL STRUCTURAL BAY

Openings, if needed, to be vertically aligned.

STRUCTURE ADJUSTMENTS TO COORDINATE WITH UNDERGROUND CARPARK

STRUCTURAL DESIGN CONCEPT - TYPICAL PLAN

"ADJUSTED" STRUCTURES

7.5 m

3.25 m

4 to 5.7 m

TYPICAL STRUCTURAL BAY

32

2.AMSTERDAM - MOLENWIJK

THE SITE IN TIME

EXISTING CARPARK

Geschatte situatie	Huidige parkeergarage: wordt ongeveer voor 90% gebruikt		
320 woningen, appartementen	Parkeernorm = 0.9		
Parkeren begane grond, beschikbaar voor bezoekers	85 (66 bij 2 auto's per stramien)	PN=0.27 (0.2)	ĺ
Parkeren verdiepingen	202 (waarvan 8 op BG)	PN=0.63	
Huidige bezetting, gebruikte parkeerplaatsen	287 (268)		İ

- Parking ground floor, available for visitors

Parking floors

Cyrrently used parking lots

source: Vanshagen Architecten

INITIAL, DISCARDED IDEA - EXTENDING THE EXISTING CARPARK

1 HALF LEVEL CAR PARK RETAINED EXCEPT FOR LIGHTWEIGHT ROOF

2 NEW WOODEN CORES ADJACENT TO EXIST. STRUCTURE TO LINK LEVELS ON BOTH ENDS OF THE EXISTING STRUCTURE

3 CORNERS FILLED WITH WOODEN EXTENSION. CENTRALLY LOCATED RAMP TO CONNENCT ALL CARPARK DECKS

3 STOREY WOODEN EXTENSION TO OVER THE EXISTING CONCRETE STRUCTURE

POTENTIAL TO CREATE 53 HOMES EXTENDING UPWARDS AND SIDEWAYS THE EXISITNG STRUCTURE

NEW CARPARK WITH SAME FOOTPRINT

RE-BUILD RC CONCRETE CARPAK WITH UPPER TIMBER EXTENSION

40 RESIDENTAIL UNITS - 190 CAR PARKING SPACES

TYPICAL CARPARK FLOOR (32 PARKING SPACES)

CARPARK FLOOR (DOUBLE)

TYPICAL CARPARK FLOOR (72 PARKING SPACES)

MIXED USE FLOOR - 8 HOMES AND 32 CARPARK SPACES

RESIDENTIAL FLOOR - 16 HOMES

TIMBER EXTENSION - STRUCTURE

STRUCTURAL DESIGN CONCEPT - AXONOMETRIC VIEW

SECTION WITH HIGHLIGTED NEW RC CONCRETE CARPARK AND RESIDENTAIL EXTENSION

REVISED APPROACH: DEMOLITION OF EXISTING CARPARK - NEW TIMBER CARPARK

FUTURE (FULL RESIDENTIAL)

DAY ONE (MIXED USE)

CONTINUOS CAR PARK FLOORS FOR + RESIDENTIAL ABOVE

FULL TIMBER STRUCTURE: REVERSIBLE / FUTURE PROOF ARCHITECTURE

40 PARKING SPACES

52 PARKING SPACES

TYPICAL RESIDENTIAL FLOOR

16 HOUSED PER FLOOR

REVISED APPROACH: DEMOLITION OF EXISTING CARPARK - NEW MIXED USE STRUCTURE

MIXED USE STRUCTURE (HOUSING + CARPARK)

FURTURE FULL HOUSING CONVERSION

